个人中心  用户登录  用户注册
检索条件
搜索范围     关键字     每页显示条数
开始时间   结束时间        
搜索结果如下(共33条):

搜索范围:全部 ;关键字:厚板;搜索位置:无限定;

1:[成果转化与推广--新材料]高性能国产低压变频器

本研发项目攻克了矢量控制、多机并联、电机参数自动辨识、模型参数自整定、非线性补偿、负荷观测器、实时以太网、快速数据采集分析技术等多项难题,共计获得发明专利4项,实用新型专利2项,软件著作权6项,国内外学术论文5篇,获得省部级优秀论文一等奖,被国内核心期刊、EI、IEEE收录。本项目经中国机械工业联合会鉴定处于国际先进水平,其产品通过国际TüV的2项认证和CCS中国船级社认证。 自2009年本项目产品先后在中厚板和棒线材生产线、飞剪、转炉等国产高端装备得到应用,总计装机容量约为200MW,累计销售1000多套,累计合同额约1.5亿元,为用户节省投资约5千万元,为北京市累计纳税300多万元。
作者:wys@csm.org.cn 发表时间: 2020-03-27 10:34:34 阅读(1594) 评论(0)

2:[成果转化与推广--板带材新技术]热轧板带钢密集快冷工艺装备技术

热轧板带钢密集快冷工艺装备技术,是在热轧板带轧后冷却工序最具推广应用潜力的新技术之一,该技术主要通过冷却装置合理的结构设计克服传统的U型集管冷却装置冷却速度低、冷却均匀性差以及温度控制精度低等固有缺点,可完全满足高等级管线钢、汽车钢高强结构钢等对于高冷速、高冷却均匀性及高精度冷却路径等控冷工艺的需求,近年来逐步得到企业的认可与肯定,在热轧生产线得到了较多的推广应用,具有重要的推广价值。
作者:ustbgyy 发表时间: 2020-03-24 05:16:06 阅读(1621) 评论(0)

3:[成果转化与推广--板带材新技术]热轧板带钢常化冷却工艺装备技术

热轧板带钢常化冷却工艺装备技术,主要作用是克服热轧板带钢在常规的常化热处理工艺后强度降低、合格率下降、组织粗大以及生产成本升高等问题,该技术主要在常化热处理炉之后增加快速冷却装置,控制正火后的冷却过程,采用合理的常化后钢板冷却工艺的实施,达到控制板带钢组织性能的目的,该技术的实施可提高常化热处理产品的合格率、降低合金元素含量、降低生产成本,助力企业提高市场竞争力。
作者:ustbgyy 发表时间: 2020-03-24 05:16:05 阅读(1493) 评论(0)

4:[成果转化与推广--冶金自动化与信息技术]基于机器视觉的BKVision金属表面缺陷在线检测系统

钢铁工业产品线中热连轧、中厚板、连铸坯、棒材、冷轧板带等生产线具有复杂性、多变性等特点,其产品的质量好坏直接影响到生产 效率和企业效益。针对这种高温、高速、人工检测效率极低、工人强度大安全性难移保证等众多关键问题,我们开发钢铁工业非接触的、高速、高精度在线质量检测关键技术具有非常重要的现实意义。 该技术给出了基于机器视觉的高温高速成像,复杂背景缺陷库及模型建立,并行计算系统等关键技术的成套钢铁工业视觉检测方案,通过工业摄像机获取到的大量钢板图像数据,经过并行计算机系统综合计算、分析,使用深度学习卷积神经网络方法建立缺陷数据识别模型,这样在生产过程中若再次出现同类缺陷类型时实现将同类缺陷抓拍并检测识别出来,从而实现质量自动分析及缺陷报警。 应用该技术可以对钢铁工业板带钢生产减少废品率,减少开卷次数,减少翻板次数,降低工人劳动强度,改善工人质检作业环境,实现在线质量检测的同时可整体提高产线生产效率。从实际应用上看,可大幅度减少由于批量质量问题产生的损失,该技术已推广到多个热连轧、中厚板、连铸坯、棒材、退火酸洗等生产线应用,据有些客户热轧、中厚板钢厂使用该技术后实际数据对比可知,每年整体产生1000万以上的价值。
作者:ustbgyy 发表时间: 2020-03-24 05:15:52 阅读(1810) 评论(0)

5:[成果转化与推广--板带材新技术]热轧厚钢板本质细晶化高效轧制技术

控制轧制的核心思想是对奥氏体硬化状态的控制,即通过变形在奥氏体中积累大量的能量,力图在轧制过程中获得处于硬化状态的奥氏体,为后续的相变过程中实现晶粒细化做准备。控制轧制的基本手段是“低温大压下”和添加微合金元素。所谓“低温”是在接近相变点的温度进行变形,通常采用750~850℃。由于变形温度低,可以抑制奥氏体的再结晶,保持其硬化状态。“大压下”是指施加超出常规的大压下量,这样可以增加奥氏体内部储存的变形能,提高硬化奥氏体程度。增加铌微合金元素提高奥氏体的再结晶温度,使奥氏体在比较高的温度即处于未再结晶区,因而可以增大奥氏体在未再结晶区的变形量,实现奥氏体的硬化。为了进一步强化钢材的性能,在控制轧制的基础上又开发了控制冷却技术。控制冷却的核心思想,是对处于硬化状态奥氏体相变过程进行控制,以进一步细化铁素体晶粒,甚至通过相变强化得到贝氏体等强化相,进一步改善材料的性能。 采用低温大压下为特征的控制轧制工艺,与长久以来形成的“趁热打铁”的传统观念背道而驰,其改变了传统的高温连续轧制路线,不论对轧制装备能力还是在生产节奏的控制上都提出了更高要求。低温轧制必然受到设备能力等条件的限制,操作方面的问题也不容回避。为了实现低温大压下,钢铁行业长期以来致力于大幅提升轧制设备能力,为此投入了大量人力和物力资源。即便如此,对于一些特殊用途厚板产品,现有轧机仍无法很好的满足操作要求,对工艺方案的制定及实施均带来极大挑战。另一方面,钢板经过高温加热和在高温阶段粗轧后,需要经历较长时间的待温,以实现低温轧制,由此将对轧制节奏和生产效率造成不利影响。 在上述背景下,开发出热轧厚钢板本质细晶化高效轧制技术,通过化学成分和冶炼工艺的优化设计,使钢材本身具备晶粒细化能力,在大幅提高低温轧制温度甚至取消低温控轧的条件下,仍获得晶粒细化的显微组织以及良好的力学性能,显著提高轧制节奏和生产效率,对于高端厚板产品的开发以及钢铁企业生产能力和技术水平的提升具有重要意义。
作者:13840183083 发表时间: 2020-03-21 11:10:58 阅读(1604) 评论(0)

6:[成果转化与推广--连铸新技术]高品质连铸坯高效与绿色化生产技术

连铸在钢铁制造流程中具有中心地位,目前我国超过98%的铸坯母材均采用连铸生产。然而,实际生产过程,微合金钢铸坯频发表面裂纹缺陷、大断面铸坯中心偏析与疏松控制不理想,已成为钢铁行业的共性技术难题,制约了高端钢材的高质、高效与绿色化生产。针对该共性技术难题,立足于连铸坯表面组织高塑化控制和高温连铸坯断面逆向温度场分布特性,开发了曲面结晶器及二冷控冷的铸坯表面裂纹控制技术和凝固末端重压下的铸坯高致密均质化技术,从根本上改善/消除铸坯凝固缺陷,实现连铸高效与绿色化生产的关键。 针对微合金钢连铸坯表面裂纹频发难题,立足于微合金钢表层组织析出与组织生长行为,研发形成了基于连铸结晶器角部快冷以弥散化析出碳氮化物和连铸二冷高温区循环相变以超细化晶粒实现凝固组织高塑化的裂纹控制新工艺,并研制出了角部高效传热曲面结晶器和结晶器窄面足辊横向3喷嘴超强控冷装备与工艺技术。 针对大断面连铸坯的中心偏析、疏松等凝固缺陷难题,从理论、工艺、装备等方面入手,研发了适用于我国“一线多产”特点的连续、动态重压下关键工艺与装备技术,形成了以基于溶质非均匀分布“软测量”与压力压下量实时反馈“真检测”的凝固末端位置形貌高精度在线标定、同步控制中心偏析与疏松的两阶段连续重压下工艺、精准控制驱动扭矩提升铸坯心部变形的高效挤压工艺、避免压下裂纹与滞坯风险的实施保障措施等为代表的“准确、高效、稳定”压下的连铸凝固末端重压下集成技术,并开发了宽厚板连铸用增强型紧凑扇形段与大方坯连铸用渐变曲率凸型辊,突破了常规连铸机无法稳定实施大变形压下的装备瓶颈。
作者:13840183083 发表时间: 2020-03-21 11:10:47 阅读(1666) 评论(0)

7:[成果转化与推广--冶金自动化与信息技术]基于机器视觉的中厚板轮廓检测系统

中厚板生产过程中,板坯的头尾部及侧面会由于一系列的因素而发生较为严重的塑性变形,使得轧制成品的平面形状偏离矩形形状,需要后续的精整以及剪切工序使其满足订单所需的规格。而现今钢板轮廓检测方法,大多苦于现场环境复杂,噪声污染严重,导致检测精度不高。因此,基于机器视觉的中厚板轮廓精准识别成为提高中厚板剪切效率、降低剪切损耗的有效手段和必选方案。 本系统将给出基于机器视觉的中厚板形状检测系统硬件配置与软件功能总体方案,建立中厚板图像轮廓采集系统的架构,开发大尺寸运动目标采集模型、结合中厚板厚度变化的相机动态标定及畸变矫正模型以及多尺度噪声融合情况下的中厚板轮廓识别模型等一系列高精度检测模型,可以精准检测到中厚板的轮廓特征,为后续剪切提供数据指导。 基于机器视觉中厚板轮廓检测系统具有很高的检测精度,宽度检测指标±3mm,长度检测指标±20mm(40m),可极大程度降低剪切后长度不足以及问题板的比例。该项技术不仅是中厚板企业和市场的需要,也是摆脱国外厂商在机器视觉检测技术方面垄断的需求。相比传统中厚板检测及剪切方案,可大幅度提高剪切智能化水平,有效降低劳动强度,为中厚板生产线降本提质增效奠定良好基础。现已推广应用至某4300mm宽厚板生产线,预计年度创效约380万元。
作者:13840183083 发表时间: 2020-03-21 11:10:08 阅读(1599) 评论(0)

8:[成果转化与推广--连铸新技术]低成本、高效化板带材绿色制造关键技术

针对国内板带材生产中能耗高、成材率低、生产效率低的实际情况,以国内典型微合金化钢板带材流程为依托,开发了系统完整的关键工艺与装备技术,包括:1)以倒角结晶器技术为核心,开发了具有优化弧形曲面形状的倒角结晶器和不同结构组合的侧面支撑足辊,有效控制了裂纹敏感性钢种铸坯的角部横裂纹和纵裂纹,使微合金化钢连铸坯表面缺陷率降低到0.5%以下,实现了微合金化钢连铸坯生产由冷态下线切角清理到550℃热装的转变;2)突破微合金化钢铸坯红送裂纹形成机理,开发了连铸坯表面快冷工艺与装备技术,通过铸坯表面快冷,使铸坯表面温度迅速降低至600℃以下,表面层8-10mm厚度铸坯完全实现奥氏体向铁素体转变,有效避免热送过程中红送裂纹的发生,同时,又可保证铸坯芯部900-1000℃的高温,使铸坯断面平均温度达到750℃-800℃,实现了连铸坯由冷装到550℃温装、再到750℃以上高温直装轧制的两个飞跃;3)以连铸坯二次倒角及角部形状优化控制为核心,开发了板带材边直裂或翘皮控制装备和技术,使低碳、超低碳带钢边直裂及翘皮缺陷发生率降低90%以上,使宽厚板边直裂发生位置距离边部小于10mm的比例达到85%以上,提高宽厚板成材率1~2%;4)集成优化了倒角结晶器技术、板带材边直裂控制技术和铸坯表层快冷技术,形成了低成本、高效化板带材绿色制造成套技术,并实现工业化应用。 同时,为了进一步提高铸坯质量和铸机的生产效率,还配套开发了包括凝固末端轻压下技术、高拉速技术、连铸坯热态在线调宽技术、连铸坯质量专家系统、结晶器漏钢预报技术、二冷动态控制技术、中间包快换技术、保护渣系列技术等多种技术作为该集成技术的支撑。上述技术的集成应用,实现了从铸坯到轧材对产品各个环节的质量控制,提高了钢的成材率、节约了能源消耗、大幅缩短了生产时间,减少了钢厂的车间场地和资金占用,其生产线关键技术指标达到国际领先。
作者: 发表时间: 2020-03-18 04:01:03 阅读(1672) 评论(0)

9:[成果转化与推广--炼钢工艺与技术]高品质特殊钢绿色节能电渣重熔技术与成套装备

电渣重电熔钢组织和性能优异,应用于各类高端装备制造领域。但传统电渣重熔技术耗能高、氟污染重、生产效率低,产品质量差无法满足高端装备的材料需求。东北大学特殊钢冶金课题组提出了电渣重熔过程“洁净度控制”和“均质化凝固”2个原创性理论,形成了高洁净高均质电渣重熔成套技术与装备、特厚板坯和特大型钢锭电渣重熔技术、半连续电渣重熔实心和空心钢锭的成套技术及装备、电渣重熔过程节电和除氟技术等原创新技术,开发了系列高端材料,节能减排和提效降本效果显著,实现我国电渣技术“从跟跑、并跑、到领跑”的历史性跨越。 本项目技术可以为企业提供电渣重熔成套装备、工艺和新产品开发整体解决方案。也可以就企业单项技术提供服务。如新建电渣炉、老旧电渣炉升级改造、节能降耗技术、质量提升和新产品开发等。
作者:高怀 发表时间: 2020-03-16 09:28:09 阅读(1783) 评论(0)

10:[成果转化与推广--炼钢工艺与技术]连铸坯凝固末端大压下技术

连铸坯凝固末端大压下技术是基于连铸坯轻压下技术发展而来,适用于大断面连铸坯的新技术。其利用连铸坯芯部温度高和表面温度低的逆向温度场,通过在连铸坯凝固末端施加大压下量/率,消除/减轻连铸坯的中心疏松和缩孔,全面提高铸坯致密度,从而可突破轧制压缩比的严格限定,替代超厚板坯连铸(600mm 厚)、真空复合焊接轧制、模铸等工艺流程,实现低轧制压缩比条件下厚板与大规格型材的稳定生产。 一套铸轧式连铸机凝固末端大压下装置,是由大压下铸轧机(包括大压下辊和辅助夹持辊)、传动系统、液压润滑系统、气水冷却系统、维修更换系统和电气自动化系统组成。其结合了轧机压下形式和扇形段压下形式的优点,在连铸机扇形段区域有限的空间内,主压下采用轧机结构,辅助压下采用扇形段结构,将二者有机地结合为一个易于更换的整体,外形尺寸与其他扇形段一致;可跟踪铸坯的凝固末端位置灵活选择压下位置,并实现了单道次大于20mm的大压下量,铸坯中心应变速率大于0.04s-1,可有效地消除厚连铸坯的中心疏松和缩孔。
作者:wys@csm.org.cn 发表时间: 2020-03-12 03:02:44 阅读(1449) 评论(0)

第2页/共4页 上一页  1  2  3  4  下一页     

中国金属学会 版权所有2013 Tel:010-65133322-1612 京ICP备06036139号-4